热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

获胜者|假定_深度学习图像分类介绍

篇首语:本文由编程笔记#小编为大家整理,主要介绍了深度学习图像分类介绍相关的知识,希望对你有一定的参考价值。目录1图像分

篇首语:本文由编程笔记#小编为大家整理,主要介绍了深度学习图像分类介绍相关的知识,希望对你有一定的参考价值。



目录


  • 1 图像分类
  • 2 常用数据集
    • 2.1 mnist数据集
    • 2.2 CIFAR-10和CIFAR-100
    • 2.4 ImageNet

  • 3 总结




1 图像分类

图像分类实质上就是从给定的类别集合中为图像分配对应标签的任务。也就是说我们的任务是分析一个输入图像并返回一个该图像类别的标签。

假定类别集为categories = dog, cat, panda,之后我们提供一张图片给分类模型,如下图所示:

分类模型给图像分配多个标签,每个标签的概率值不同,如dog:95%,cat:4%,panda:1%,根据概率值的大小将该图片分类为dog,那就完成了图像分类的任务。


2 常用数据集

2.1 mnist数据集

该数据集是手写数字0-9的集合,共有60k训练图像、10k测试图像、10个类别、图像大小28×28×1.我们可以通过tf.keras直接加载该数据集:

from tensorflow.keras.datasets import mnist
# 加载mnist数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

随机选择图像展示结果如下所示:


2.2 CIFAR-10和CIFAR-100


  • CIFAR-10数据集5万张训练图像、1万张测试图像、10个类别、每个类别有6k个图像,图像大小32×32×3。下图列举了10个类,每一类随机展示了10张图片:


  • CIFAR-100数据集也是有5万张训练图像、1万张测试图像、包含100个类别、图像大小32×32×3。

在tf.keras中加载数据集时:

import tensorflow as tf
from tensorflow.keras.datasets import cifar10,cifar100
# 加载Cifar10数据集
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
# 加载Cifar100数据集
(train_images, train_labels), (test_images, test_labels)= cifar100.load_data()

2.4 ImageNet

ImageNet数据集是ILSVRC竞赛使用的是数据集,由斯坦福大学李飞飞教授主导,包含了超过1400万张全尺寸的有标记图片,大约有22000个类别的数据。ILSVRC全称ImageNet Large-Scale Visual Recognition Challenge,是视觉领域最受追捧也是最具权威的学术竞赛之一,代表了图像领域的最高水平。从2010年开始举办到2017年最后一届,使用ImageNet数据集的一个子集,总共有1000类。

该比赛的获胜者从2012年开始都是使用的深度学习的方法:


  • 2012年冠军是AlexNet,由于准确率远超传统方法的第二名(top5错误率为15.3%,第二名为26.2%),引起了很大的轰动。自此之后,CNN成为在图像识别分类的核心算法模型,带来了深度学习的大爆发。
  • 2013年冠军是ZFNet,结构和AlexNet区别不大,分类效果也差不多。
  • 2014年亚军是VGG网络,网络结构十分简单,因此至今VGG-16仍在广泛使用。
  • 2014年的冠军网络是GooLeNet ,核心模块是Inception Module。Inception历经了V1、V2、V3、V4等多个版本的发展,不断趋于完善。GoogLeNet取名中L大写是为了向LeNet致敬,而Inception的名字来源于盗梦空间中的"we need to go deeper"梗。
  • 2015年冠军网络是ResNet。核心是带短连接的残差模块,其中主路径有两层卷积核(Res34),短连接把模块的输入信息直接和经过两次卷积之后的信息融合,相当于加了一个恒等变换。短连接是深度学习又一重要思想,除计算机视觉外,短连接思想也被用到了机器翻译、语音识别/合成领域
  • 2017年冠军SENet是一个模块,可以和其他的网络架构结合,比如GoogLeNet、ResNet等。

上述图像分类模型都比较经典,特别是VGG16、GoogLeNet和ResNet,现在仍然在广泛使用。


3 总结

1.图像分类是什么?
从给定的类别集合中为图像分配对应的类别标签

2.常用的数据集
Mnist,cifar数据集,ImageNet数据集


推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 历经三十年的开发,Mathematica 已成为技术计算领域的标杆,为全球的技术创新者、教育工作者、学生及其他用户提供了一个领先的计算平台。最新版本 Mathematica 12.3.1 增加了多项核心语言、数学计算、可视化和图形处理的新功能。 ... [详细]
  • 丽江客栈选择问题
    本文介绍了一道经典的算法题,题目涉及在丽江河边的n家特色客栈中选择住宿方案。两位游客希望住在色调相同的两家客栈,并在晚上选择一家最低消费不超过p元的咖啡店小聚。我们将详细探讨如何计算满足条件的住宿方案总数。 ... [详细]
  • 本文详细探讨了 org.apache.hadoop.ha.HAServiceTarget 类中的 checkFencingConfigured 方法,包括其功能、应用场景及代码示例。通过实际代码片段,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 深入理解K近邻分类算法:机器学习100天系列(26)
    本文详细介绍了K近邻分类算法的理论基础,探讨其工作原理、应用场景以及潜在的局限性。作为机器学习100天系列的一部分,旨在为读者提供全面且深入的理解。 ... [详细]
  • ZooKeeper集群脑裂问题及其解决方案
    本文深入探讨了ZooKeeper集群中可能出现的脑裂问题,分析其成因,并提供了多种有效的解决方案,确保集群在高可用性环境下的稳定运行。 ... [详细]
  • 2018-2019学年第六周《Java数据结构与算法》学习总结
    本文总结了2018-2019学年第六周在《Java数据结构与算法》课程中的学习内容,重点介绍了非线性数据结构——树的相关知识及其应用。 ... [详细]
  • 基于Node.js、Express、MongoDB和Socket.io的实时聊天应用开发
    本文详细介绍了使用Node.js、Express、MongoDB和Socket.io构建的实时聊天应用程序。涵盖项目结构、技术栈选择及关键依赖项的配置。 ... [详细]
  • 实用正则表达式有哪些
    小编给大家分享一下实用正则表达式有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下 ... [详细]
  • 华为智慧屏:超越屏幕尺寸的智能进化
    继全球发布后,华为智慧屏于9月26日在上海正式亮相,推出65英寸和75英寸版本。该产品不仅在屏幕尺寸上有所突破,更在性能和智能化方面实现了显著提升。 ... [详细]
  • Java项目分层架构设计与实践
    本文探讨了Java项目中应用分层的最佳实践,不仅介绍了常见的三层架构(Controller、Service、DAO),还深入分析了各层的职责划分及优化建议。通过合理的分层设计,可以提高代码的可维护性、扩展性和团队协作效率。 ... [详细]
  • 本文探讨了如何通过预处理器开关选择不同的类实现,并解决在特定情况下遇到的链接器错误。 ... [详细]
  • 本文详细介绍了在不同操作系统中查找和设置网卡的方法,涵盖了Windows系统的具体步骤,并提供了关于网卡位置、无线网络设置及常见问题的解答。 ... [详细]
  • 理解UML的重要性及其应用
    探讨为什么大多数开发人员难以成为架构师,介绍从现实世界到业务模型的抽象过程,并详细解释UML在软件设计中的关键作用。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
author-avatar
AYAKASHIZ
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有